Quantitative convergent-beam electron diffraction (QCBED) has been maturing as a technique for the last 3 decades as a consequence of advanced energy-filtering methods and huge increases in computing power. Its ability to accurately measure the distribution of electrons in the formation of chemical bonds has been exemplified time and again in homogeneous single crystal materials with small unit cells (see [1 - 9] for just a few examples). It is now poised to venture beyond these confines and is being developed into a method for examining nano-composite / nano-structured materials. The present work will summarise and assess these developments and also explore multiple avenues for the combination of QCBED with solid-state modelling via density functional theory (DFT).
[1] M. Saunders, D.M. Bird, N.J. Zaluzec, W.G. Burgess, A.R. Preston, C.J. Humphreys, Ultramicroscopy 60 (1995), 311-323.
[2] K. Tsuda, M. Tanaka, Acta Cryst. A55 (1999), 939-954.
[3] M. Saunders, A.G. Fox, P.A. Midgley, Acta Cryst. A55 (1999), 471-479.
[4] J.M. Zuo, M. Kim, M. O’Keeffe, J.C.H. Spence, Nature 401 (1999), 49-52.
[5] B. Jiang, J. Friis, R. Holmestad, J.M. Zuo, M. O'Keeffe, J.C.H. Spence, Phys. Rev. B69 (2004), 245110.
[6] J. Friis, B. Jiang, K. Marthinsen, R. Holmestad, Acta Cryst. A61 (2005), 223-230.
[7] P.N.H. Nakashima, Phys. Rev. Lett. 99 (2007), 125506.
[8] K. Tsuda, D. Morikawa, Y. Watanabe, S. Ohtani, T. Arima, Phys. Rev. B81 (2010), 180102(R).
[9] P.N.H. Nakashima, A.E. Smith, J. Etheridge, B.C. Muddle, Science 331 (2011), 1583-1586.